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Abstract

This tutorial will be a review of recent advances in deep generative models. Generative models 
have a long history at UAI and recent methods have combined the generality of probabilistic 
reasoning with the scalability of deep learning to develop learning algorithms that have been 
applied to a wide variety of problems giving state-of-the-art results in image generation, 
text-to-speech synthesis, and image captioning, amongst many others. Advances in deep 
generative models are at the forefront of deep learning research because of the promise they 
offer for allowing data-efficient learning, and for model-based reinforcement learning. At the 
end of this tutorial, audience member will have a full understanding of the latest advances in 
generative modelling covering three of the active types of models: Markov models, latent 
variable models and implicit models, and how these models can be scaled to high-dimensional 
data. The tutorial will expose many questions that remain in this area, and for which there 
remains a great deal of opportunity from members of the UAI community.



Beyond Classification

Move beyond associating 
inputs to outputs

Understand and imagine 
how the world evolves

Recognise objects in the 
world and their factors of 

variation

Detect surprising events in 
the world

Establish concepts as useful 
for reasoning and 
decision making

Anticipate and generate 
rich plans for the future



What is a Generative Model?

Characteristics are:

- Probabilistic models of data that allow 

for uncertainty to be captured.

- Data distribution p(x) is targeted.

- High-dimensional outputs.

A model that allows 
us to learn a 

simulator of data

Models that allow for 
(conditional) density 

estimation

Approaches for 
unsupervised learning 

of data



Why Generative Models?



Why Generative Models
Generative models have a 

role in many problems.



Drug Design and Response Prediction
Proposing candidate molecules and for improving prediction through semi-supervised learning.

Gómez-Bombarelli, et al. 2016



Locating Celestial Bodies
Generative models for applications in astronomy and high-energy physics. 

Regier et al., 2015



Image super-resolution
Photo-realistic single image super-resolution

Ledig et al., 2016



Text-to-speech Synthesis
Generating audio conditioned on text

Oord et al., 2016



Image and Content Generation

DRAW Pixel RNN

Generating images and video content.

ALI
Gregor et al., 2015, Oord et al., 2016, Dumoulin et al., 2016



Communication and Compression

Original images

JPEG-2000

JPEG

RVAE v1

Compression rate: 0.2bits/dimension

RVAE v2

Hierarchical compression of images and other data.

Gregor et al., 2016



One-shot Generalisation
Rapid generalisation of novel concepts

Rezende et al., 2016



Visual Concept Learning
Understanding the factors of variation and invariances.

Higgins et al., 2017



Future Simulation

Robot arm simulationAtari simulation

Simulate future trajectories of environments based on actions for planning

Chiappa et al, 2017, Kalchbrenner et al., 2017

https://docs.google.com/file/d/0Byi-N_xB02-bNm5QWmg2UEdSaUk/preview


Scene Understanding
Understanding the components of scenes and their interactions

Wu et al., 2017



Probabilistic Deep Learning



Two Streams of Machine Learning

+ Rich non-linear models for 
classification and sequence 
prediction.

+ Scalable learning using stochastic 
approximation and conceptually 
simple.

+ Easily composable with other 
gradient-based methods.

- Only point estimates.
- Hard to score models, do selection 

and complexity penalisation.

- Mainly conjugate and linear models.
- Potentially intractable inference, 

computationally expensive or long 
simulation time.

+ Unified framework for model 
building, inference, prediction and 
decision making.

+ Explicit accounting for uncertainty 
and variability of outcomes.

+ Robust to overfitting; tools for model 
selection and composition.

Deep Learning Probabilistic Reasoning

Complementary strengths, making it natural to combine them



Thinking about Machine Learning

1. Models 2. Learning Principles

3. Algorithms



Types of Generative Models

Fully-observed models
Model observed data directly without 
introducing any new unobserved local 
variables. 

Latent Variable Models
Introduce an unobserved random variable for every 
observed data point to explain hidden causes.

● Prescribed models: Use observer likelihoods and 
assume observation noise.

● Implicit models: Likelihood-free models.1. Models



Spectrum of Fully-observed Models



Building Generative Models

Equivalent ways of representing the same DAG



Fully-observed Models + Can directly encode how observed 
points are related.

+ Any data type can be used
+ For directed graphical models: 

Parameter learning simple
+ Log-likelihood is directly 

computable, no approximation 
needed. 

+ Easy to scale-up to large models, 
many optimisation tools available.

- Order sensitive.
- For undirected models, parameter 

learning difficult: Need to compute 
normalising constants.

- Generation can be slow: iterate 
through elements sequentially, or 
using a Markov chain.

All conditional probabilities described by deep networks.



Spectrum of Latent Variable Models



Building Generative Models



Building Generative Models
Graphical Models + Computational Graphs (aka NNets)



Latent Variable Models + Easy sampling. 
+ Easy way to include 

hierarchy and depth.
+ Easy to encode structure 
+ Avoids order dependency 

assumptions: 
marginalisation induces 
dependencies.

+ Provide compression and 
representation.

+ Scoring, model comparison 
and selection possible using 
the marginalised likelihood.

- Inversion process to 
determine latents 
corresponding to a input is 
difficult in general

- Difficult to compute 
marginalised likelihood 
requiring approximations.

- Not easy to specify rich 
approximations for latent 
posterior distribution.

Introduce an unobserved local 
random variables that represents 

hidden causes.



Choice of Learning Principles

2. Learning Principles

For a given model, there are many competing inference methods.

● Exact methods (conjugacy, enumeration)
● Numerical integration (Quadrature)
● Generalised method of moments
● Maximum likelihood (ML)
● Maximum a posteriori (MAP)
● Laplace approximation
● Integrated nested Laplace approximations (INLA)
● Expectation Maximisation (EM)
● Monte Carlo methods (MCMC, SMC, ABC)
● Contrastive estimation (NCE)
● Cavity Methods (EP)
● Variational methods



Combining Models and Inference

A given model and learning principle can be implemented in many ways.

● Optimisation methods 
(SGD,  Adagrad)

● Regularisation (L1, L2, 
batchnorm, dropout)

Convolutional neural network 
+ penalised maximum likelihood

Latent variable model 
+ variational inference

Restricted Boltzmann Machine 
+ maximum likelihood

● VEM algorithm
● Expectation propagation
● Approximate message passing
● Variational auto-encoders (VAE)

● Contrastive Divergence
● Persistent CD
● Parallel Tempering
● Natural gradients

Implicit Generative Model 
+ Two-sample testing

● Method-of-moments
● Approximate Bayesian Computation 

(ABC)
● Generative adversarial network (GAN)

3. Algorithms



Objective Quantity of Interest

Prediction

Planning

Parameter estimation

Experimental Design

Hypothesis testing

Inference Questions?



Approximate Inference



Latent Variable Models



Methods for Approximate Inference

● Laplace approximations

● Importance sampling

● Variational approximations

● Perturbative corrections

● Other methods: MCMC, Langevin, HMC, Adaptive MCMC



Laplace Approximation

Other names
Saddle-point approximation, 
Delta-method



Importance Sampling 

Importance weights

Monte-Carlo

Important property

Pointwise Free-energy



Importance sampling provides a bound in expectation 

x

x

z



Variational Inference



Variational Inference

Reconstruction Regularizer



Perturbative Corrections



Design Choices

Choice of Model
Computation graphs, Renderers, simulators and environments

Approximate Posteriors
- Mean-field
- Structured approx
- Aux. variable methods

Variational Optimisation
- Variational EM
- Stochastic VEM
- Monte Carlo gradient 

estimators



Variational EM Algorithm

E

M

Fixed-point iterations between variational and model parameters

E M



Amortised Inference

Introduce a parametric family of conditional densities

Rezende et al., 2015



Variational Auto-encoders

Deep Latent Gaussian Model p(x,z)

Gaussian Recognition Model q(z)

Simplest instantiation of a VAE

We then optimise the free-energy wrt model and variational parameters
Kingma and Welling, 2014, Rezende et al., 2014



Richer VAES
DRAW: Recurrent/Dependent Priors Recurrent/Dependent Inference Networks

Volumetric and 
Sequence data

AIR: Structured Priors Semi-supervised Learning



Applications of 
Generative Models

Types of 
Generative Models

Amortised InferenceVariational Principles

Probabilistic 
Deep Learning

Summary so far



END OF FIRST HALF



Stochastic Optimisation



Classical Inference Approach

E M

Compute expectations then M-step gradients



Stochastic Inference Approach

Gradient is of the parameters of the distribution w.r.t. which the expectation is taken.

In general, we won’t know the expectations.



Stochastic Gradient Estimators

Score-function estimator: 
Differentiate the density q(z|x)

Typical problem areas:
● Generative models and inference
● Reinforcement learning and control
● Operations research and inventory control
● Monte Carlo simulation
● Finance and asset pricing
● Sensitivity estimation

Pathwise gradient estimator: 
Differentiate the function f(z)

Fu, 2006



Score Function Estimators

Other names:
● Likelihood-ratio trick
● Radon-Nikodym derivative
● REINFORCE and policy 

gradients
● Automated inference
● Black-box inference

When to use:
● Function is not differentiable.
● Distribution q is easy to sample 

from.
● Density q is known and 

differentiable.

Gradient reweighted by the value of the function



Reparameterisation

Find an invertible function g(.) that expresses z as a 
transformation of a base distribution .

Kingma and Welling, 2014, Rezende et al., 2014



Pathwise Derivative Estimator

Other names:
● Reparameterisation trick
● Stochastic backpropagation
● Perturbation analysis
● Affine-independent inference
● Doubly stochastic estimation
● Hierarchical non-centred 

parameterisations.

When to use
● Function f is differentiable
● Density q can be described using a simpler 

base distribution: inverse CDF, location-scale 
transform, or other co-ordinate transform.

● Easy to sample from base distribution.



Gaussian Stochastic Gradients

First-order Gradient

Second-order Gradient

We can develop low-variance estimators by exploiting knowledge 
of the distributions involved when we know them

Rezende et al., 2014



Beyond the Mean Field



Mean Field Approximations

Key part of variational inference is choice of approximate posterior distribution q.



Mean-Field Posterior Approximations

Mean-field or fully-factorised posterior is usually not sufficient

Deep Latent 
Gaussian Model



Real-world Posterior Distributions

Complex dependencies · Non-Gaussian distributions · Multiple modes

Deep Latent 
Gaussian Model



Richer Families of Posteriors

Same as the problem of specifying a model of the data itself

Two high-level goals: 
● Build richer approximate posterior distributions.
● Maintain computational efficiency and scalability.



Structured Approximations



Families of Approximate Posteriors
Normalising Flows

Covariance Models

Auxiliary Variable Models



Normalising Flows

Distribution flows through a sequence of invertible transforms

Exploit the rule for change of variables:
● Begin with an initial distribution 
● Apply a sequence of K invertible transforms

Rezende and Mohamed, 2015



Normalising Flows



Normalising Flows



Choice of Transformation

Triangular Jacobians allow for 
computational efficiency.

Linear time computation of the determinant and its gradient.

Begin with a fully-factorised 
Gaussian and improve by 

change of variables.

Rezende and Mohamed, 2015; Dinh et al, 2016, Kingma et al, 2016



Normalising Flows on Non-Euclidean Manifolds

Gemici et al., 2016



Normalising Flows on non-Euclidean Manifolds





Learning in 
Implicit Generative Models



Learning by Comparison
For some models, we only have access to an 

unnormalised probability, partial knowledge of the 
distribution, or a simulator of data.

We compare the estimated 
distribution q(x) to the true 

distribution p*(x) using samples.



Mohamed and Lakshminarayanan, 2017.



Learning by Comparison

Comparison

Use a hypothesis test or comparison to 
build an auxiliary model to indicate how 
data simulated from the model differs 

from observed data. 

Estimation

Adjust model parameters to better match 
the data distribution using the comparison.



Density Ratios and Classification

Combine data

Assign labels

Equivalence  

Density 
Ratio

Bayes’ 
Rule

Real Data Simulated Data

Sugiyama et al, 2012



Density Ratios and Classification

Computing a density ratio is equivalent to class probability estimation.

Conditional

Bayes’ substitution

Class probability



Unsupervised-as-Supervised Learning

Scoring Function

Bernoulli Loss

Alternating 
optimisation

Other names and places:
● Unsupervised and supervised learning
● Continuously updating inference
● Classifier ABC
● Generative Adversarial Networks

● Use when we have differentiable 
simulators and models

● Can form the loss using any proper 
scoring rule.

Friedman et al. 2001



Generative Adversarial Networks

Comparison loss

Alternating optimisation

(Alt) Generative loss

Goodfellow et al. 2014



Integral Probability Metrics

Many choices of f available: classifiers or 
functions in specified spaces.

Wasserstein Total 
Variation

Max Mean Discrepancy Cramer

f sometimes referred to as a 
test function, witness function or a critic. 

http://www.youtube.com/watch?v=uHu7vmtNG70


Generative Models and RL



Other names and instantiations:
● Planning-as-inference 
● Variational MDPs
● Path-integral control

Probabilistic Policy Learning

Policy gradient update:
● Uniform prior on actions
● Score-function gradient estimator (aka Reinforce)

Other algorithms:
● Relative entropy policy search
● Generative adversarial imitation learning
● Reinforced variational inference



The Future



Applications of 
Generative Models

Types of 
Generative Models

Amortised Inference

Learning by Comparison

Stochastic Optimisation

Variational Principles

Probabilistic 
Deep Learning

Rich Distributions



Challenges
● Scalability to large images, videos, multiple data modalities.
● Evaluation of generative models.
● Robust conditional models.
● Discrete latent variables.
● Support-coverage in models, mode-collapse.
● Calibration.
● Parameter uncertainty.
● Principles of likelihood-free inference.
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