TEN

Formal Statistical Mechanics of
Neural Networks

As we have stressed in earlier chapters, neural networks are large interacting systems
of simple units, like the physical systems we study in statistical mechanics. The
formal methods and concepts of statistical physics are therefore natural tools to
use for neural networks. In this chapter we illustrate the use of such methods in
two different problems that we encountered earlier in the book: the recall of stored
patterns in the Hopfield associative memory network, and the capacity of a simple
perceptron.

This chapter is not for everyone. Up to this point, this book has been a fairly
general introduction to the theory of neural networks, and has not required special-
ized knowledge of formal techniques. While what follows is also self-contained, it
1s much more formal mathematically, and readers without other exposure to tech-
niques of this sort will probably find it hard going. We include these calculations
here anyway because they illustrate how such theoretical methods can be brought
to bear on problems in neural computation, with nontrivial results.

We do assume in this chapter some basic knowledge of statistical mechanics.
The necessary ideas are reviewed briefly in the Appendix.

10.1 The Hopfield Model

In Chapter 2 we described the stochastic Hopfield model and obtained a number
of its properties heuristically. The starting points were the Hebb rule (2.9) for
the connection strengths, and the dynamics based on the stochastic evolution rule
(2.40). We then calculated the average activations (S;) in the heuristically motivated

251

252 TEN Formal Statistical Mechanics of Neural Networks

mean field scheme (2.50). Here we will take a more systematic approach, obtaining
the quantities we want by first calculating the partition function

Z =Trsexp(—PH{S:}) (10.1)

where the trace, Trs, means a sum over all possible states, {S; = +1}.! We can
then take appropriate derivatives to obtain quantities of more direct interest, as
outlined in the Appendix. Our treatment follows closely the classic article by Amit,
Gutfreund, and Sompolinsky [1987a].

We start with the energy function

p
Ho=— 2L Z(Z S.-»s:‘)2 + g (10.2)

p=1

which is the same as (2.30) except for the second term (a constant), which cancels
out the diagonal S? contributions from the first term. As we showed in (2.31), this
energy function has the Hebbian connection strengths (2.9).

We again define a = p/N, the ratio of the number of desired memories to the size
of the system. We consider only the large N limit (the so-called thermodynamic
limit N — 00), so when we discuss a # 0 we mean that the number of patterns p
scales proportionally with the number of units N. But first we discuss the simpler
case a = 0 with a fixed number p of patterns, independent of N.

Mean Field Theory for o =0
We start by adding to Hy a set of “external fields” h*€f, one for each pattern g8

H=Ho-)Y h*) ¢'si. (10.3)
B)

We will set all the strengths h* to zero later, after these fields have served their
purpose.
The partition function (10.1) is now

Z = e PP/2 Trg exp [%E(Z S,-f'!‘)z + ﬁZhﬂ Zf:‘S,] . (10.4)
B i I [

This would be easy to evaluate if both the terms in the exponent were linear in the
S;’s. Then the trace would simply factor into a product of N independent terms,
one for each i, every term being a simple sum over S; = +1 and §; = —1.

1Usually the trace of an operator (or matrix) means the sum of all the diagonal elements. This
way of using it originates in quantum statistics.

10.1 The Hopfisld Model 253

Unfortunately the first term is quadratic. But we can use the “Gaussian integral -
trick” to make it linear, at the expense of some other complications. This trick

exploits the identity .
/ dre~o= bz — \/r/aeb:“" (10.5)

which can be used to turn an exponential in 2 (on the right) into an exponential
linear in b (on the left). The cost, of course, is the introduction of the auxiliary
variable z, and the integral over it. Qur price is actually p times higher, because
(10.4) contains p quadratic terms, one for each yu. So we introduce p auxiliary
variables m¥, and take a = BN/2 and b* = B, S;€} to give

Z = —pp/z(ﬁN)"/2
x Trs H/dm“ exp(—3BN(m*)? + B(m* + h“)fo‘S,-) . (10.6)

Now let us adopt a shorthand vector notation, taking m, h, and §; to be
p-component vectors with components m*, k¥ and £ respectively. Then (10.6)
becomes

7 — ¢—Ppl2 (ﬁzN)"/z din e—BNm/2 HTrs- eBm+h)-§.S. (10.7)
r -)]

The trace is now easy because the exponent is linear in S;. Using e* +e~% = 2cosh z,
we obtain after a little reorganization

Z= (%)”2 dm e—PNI(B.m) (10.8)
with
f(B,m) = o+ im? - ———Zlog 2cosh{f(m + h) - §;]) . (10.9)

We still have a p-fold integral to do, but the fact that the exponent in (10.8)
is proportional to N allows us to evaluate it in the himit of large N. The bigger N
is, the more the integral is dominated by contributions from the region where f is
smallest. So we can approximate it by finding the value of m which minimizes f, and
expanding the integrand around there. This is called the saddle-point method,
and is best understood through a simple example.

Suppose that we had a one-dimensional integral of the form

I/ = \/IV/ dz e~ N9(=) (10.10)

Then expanding the exponent around the point zo where g(z) is minimized we get

I= \/_jdz exp(—N[g(zo) + 1¢"(zo)(z — z0)® + - -]) (10.11)

254 TEN Formal Statistical Mechanics of Neural Networks

using g’(zo) = 0. If we truncate the expansion at this point, the integral is just a
Gaussian one, so

2w 27
I = \/Ne'Ng(%)‘/—— = e'N-"(”°)\/ . 10.12
Ngll(zo) 9”(3-'0) ()

For large N this result is dominated by the exponential factor, as can be clearly
seen by putting it in the form

1 1 "
N logI = g(z0)+ W(logg (zo) — log 2m)

N-—o

— g(zo)- (10.13)

Thus all we need to do is to find zg; this is often called the saddle point, from
behavior in the complex z plane.
For (10.8) we use a p-dimensional version of the same idea, thereby obtaining

— % log Z = ﬁmniln f(B,m) (10.14)

in the N — oo limit. Comparing this with (A.9) we see that

F/N = n:jln f(B,m) (10.15)

where F is the free energy, so ming, f(8,m) gives us the free energy per unit.
We now have to minimize f(3, m), which requires

of

- Om#

= mb— % S ¢# tanh{B(m + b) - ;). (10.16)

Note that this is a set of p nonlinear simultaneous equations for the p unknowns
m¥. These equations appear to depend on the random patterns §;, but in fact the
system is self-averaging; we can replace the average N™'3 . over units by an
average over patlerns at any one site, yielding

m* = ((£* tanh[8(m + h) - £])) (10.17)

where (- - -)) indicates an average over the random distribution of £ patterns. Sim-
ilarly (10.9) becomes (with o — 0)

f = sm? — p~*({log(2 cosh[B(m + h) - £]))) (10.18)

It is easy to see how the self-averaging property arises. As we go from unit to
unit in the sum on ¢ in (10.9) or (10.16), we are choosing N independent £;’s from
the distribution P(€), which we take to be uniform over the 2P possibilities. So if N

10.1 The Hopfield Model 255

is large compared to 27 the average over sites 18 equivalent to an average over the
distribution. This requires p < log N, which is valid in our present o = 0 case, but
not for the a # 0 case considered later.

The values of m# at the saddle point given by (10.17) admit a simple physical
interpretation. To see this, we start from the free energy F = —f~!log Z and
differentiate with respect to k*. Using the original expression (10.4) for Z leads—as
in (A.10)—to

OF _ ,_,0logZ _ e
spl = =B = —Zij(s,x.- (10.19)
whereas (10.15), (10.17), and (10.18) give us
oF _ 8f _ ; 3 ;
si = Vo = —N(€tanh[f(m +h) -£]) = —Nm*. (10.20)
We can thus identify .
mt = NZ,.:E:‘(S‘) (10.21)

so the saddle-point value of m* is just the average overlap of the network configu-
ration with pattern number u.

It was to derive (10.21) that we needed the external field terms inserted in
(10.3). Now they are no longer needed and we henceforth set h#* = 0. Thus the
mean field equation (10.17) becomes simply

m* = ((£¥ tanh(fm - §))) . (10.22)

There are many solutions of (10.22). The simplest and most important are the
memory states, which have a finite correlation with just one of the patterns £f.
So from (10.21) we expect the m vector for these solutions to have the form

m = (m,0,0,...) (10.23)

if we order the indices p so that the “condensed” pattern is first. Then (10.22)
reduces to

m* = (¥ tanh fme') = (€#€") tanh fm = 6, tanh fm. (10.24)

So (10.23) does give a solution—putting (10.23) into the right-hand side of (10.22)
produces the same form on the left—provided the magnitude m of the -average
overlap with pattern 1 satisfies

m = tanh fm. (10.25)

This is identical to the equation (2.54) that we found in our simpler analysis in
Chapter 2. It implies stable memory states for T < T, with T, = 1, and tells us
what fraction of the bits will be correct at any such temperature; see Fig. 2.14.

256 TEN Formal Statistical Mechanics of Neural Networks

TABLE 10.1

Critical Temperatures
.|

n Th
1 1

3 0.46
5 0.39
7 0.35

There are also more complicated solutions of the mean field equations, cor-
responding to the spurious states. The simplest of these are the syminetric
mixture states in which the m vector has the form

m:(m,m,m,...,m,g,O,...,(D (10.26)

.

~
n p—n

with n nonzero entries of m equal to some value m. Note that there are () ways
we might have placed the nonzero elements, corresponding to many such spunous
states. There is actually a further degeneracy factor of 2", because solutions like
(£m,+m,+m,0,...,0) are all possible.

If we insert t.he form (10.26) into the mean field equatlons (10.22) we obtain

mb = <<£“ tanh (ﬁm .; e”)) (10.27)

which vanishes if g > n (because (€#€v)) =0 for u # v), and otherwise gives
m = {(ztanh fmz))/n (10.28)

where z is the random variable

2= PGy (10.29)
p=1

which has a binomial distribution. Thus our symmetric combination pattern (10.26)
solves the mean field equations if m satisfies (10.28). This has solutions at any n,
as long as T' < 1.

However, not all these solutions are stable. We want m to produce a mintmum
of f(B8,m), whereas our mean field equations only guarantee a stationary point,
8f /0m* = 0. So we also need the eigenvalues of the matrix

I
Y™ Bme OmY

to be positive. This turns out to be satisfied only if n is odd, and then only if the
temperature T is below a critical temperature T,,. The first few Tp’s are shown
in table 10.1.

A (10.30)

10.1 The Hopfield Model 257

There are also asymmetric mixture states, such as

m=(3},3,%4.5000..). (10.31)
None of these is stable above T3, however. This means that one can avoid all mixture
states by going to temperatures above 73. Of course raising the temperature from
T = 0 degrades the memory states somewhat, but the amount is actually very small;
(Ncorrect) falls only very slowly from N with increasing T, as seen in Fig. 2.14. At
T = 0.47 we find from (10.25) that (Ncorrect) & 0.97N, so only about 3% of the bits
will be recalled incorrectly if we work just above T3.

Mean Field Theory for o £ 0

As we observed already in Chapter 2, the crosstalk between different patterns on
account of their random overlap begins to affect the recall of a given pattern when
p becomes of the order of N. We now examine the statistical mechanics for this
case. The self-averaging we used in the @ = 0 calculation breaks down, and we are
forced to do the averaging over the distribution of patterns more systematically.

As always, the basic quantity we.start from is log Z. Now Z depends on the
particular set of patterns used to compute the weights w;; using the Hebb rule
(2.9). What is of interest to us is the average ((log Z)) over the distribution of all
random binary patterns; this gives us the average free energy whose derivatives give
the average quantities we want to know, such as m¥. Unfortunately this average is
very hard to calculate directly, and is not the same thing as log((Z})), which would
be much easier. To get meaningful results we must average the relevant quantity,
which is log Z, not Z.

Luckily there is a technique, called the replica method, that lets us circumvent
averaging log Z. It is based on the identity

log Z = lim il

n—{_ n

(10.32)

which allows us to compute ((log Z)) from knowledge of {(Z")). Note that we need
this for the parameter n close to 0, but we ignore that for a while and focus on
{Z™) for integer n. In that case we can think of Z" as the partition function of n
copies, or replicas, of the original system, writing

Z" = Trgi Trga ... Trga e SEISII++E{ST]) (10.33)

Each copy is labelled by a superscript replica index on its S;’s, running from 1 to
n.

Proceeding as we did in the a = 0 case for (10.6), using the Gaussian integral
trick for each pattern and each replica, we now find

258 TEN Formal Statistical Mechanics of Neural Networks

(z°y = e-—ﬂpn/? (TrsH H/dm“ ﬂN 1/2

u=1p=1

X exp (-%,61\/(m';)2 + pm* fo‘sf))) (10.34)

where p labels the different replicas. Note that the pattern average ((---)} is still
over the Np variables £¥; there is no replica index on the patterns. We have omitted
any external fields h¥ this time, although it would be easy to include them.

Henceforth we focus on states in which the configuration has appreciable over-
lap with only a finite number s of the p stored patterns, called the condensed
patterns. Specifically we assume that the m}’s s2 are only appreciable in size when
g < s, with s independent of N. This will eventually allow us to use the self-
averaging trick just on these p’s. For g > s we assume mj < 1.

Let us consider the contribution of the last term in the integrand of (10.34) for

a particular u > s, one of the small mf’s:

([Tos(om Terst)) = Moo(ser i)
= H cosh (8 Z m“s")
= exp [z log cosh (8 Z meS?)|
- wl T Ems)

= exp (%2 Z .S'.-"Sf’m:,‘mf;) (10.35)

tpo

where the approximation involved log cosh z = z2/2 for small z. If we now define
an n x n matrix Ay, by

Apo = 650 — (BIN) D SES? (10.36)
we can write the whole exponential factor (for fixed y > s) in (10.34) as

E = exp (-Eg 3 i\,,,m;;mg) . (10.37)
po

2Strictly speaking: the saddle-point values of the mp’s. That is, we will agam evaluate the multi-
dimensional integral by the saddle-point method, and the values of the mb that will matter will
be those at the saddle point.

10.1 The Hopfield Model 259

This leaves us with an n-dimensional Gaussian integral, giving

/ (I;Idmﬁ(%%)m)lg - (gg)nﬁvm _ (detA)~V/2. (10.38)

We get a contribution exactly like this for every value of u greater than s (about p
in all, since p > s), giving an overall factor

(detA)~P/? = exp(—%plogdetf\) = eXp(—%plogH:\p)

p

= exp(—%leog i,,) (10.39)
P

i where S\p are the eigenvalues of A.

The extra complications we encounter for a > 0 all come from this factor
(10.39), which, together with the other parts of (10.34), now has to be summed
over all the S. Unfortunately the S-dependence is buried in the eigenvalues Ao,

and the trace is far from easy. So now we use some more auxiliary variable tricks.
First let us define a generalized version of Ayt

Apo = (1 = B)bpo — Bgpo - (10.40)
This is equal to A, if
-1 P Co o
o= {N 5, SiS¢ for p;é.a, (10.41)
0 otherwise.

Thus we can write any function G{),} of the eigenvalues of A in the form

G{}} = / [IT dapo 8(00 - %Zs:’s;’)]c{x,,} (10.42)
(p0o) i

using a Dirac delta function, where the A,’s are the eigenvalues of A, and are
functions of the g,¢’s. There are n(n — 1) /2 integrals (the notation (po) means all
distinct pairs), and we leave it as understood that g0 = ¢, and g, = 0.

Now we introduce yet another set of auxiliary variables, this time for an integral
representation of the delta-function:

§(z) = / ;Trie-"’. (10.43)

—ico
We need to use this n(n — 1)/2 times, giving us

0 o [|

H dq,.dr,, exp (—-Naﬁzrpoqpo + aﬁzrpo E Sfo)] G{2,}
(p2) i
(10.44)

260 TEN Formal Statistical Mechanics of Neural Networks

where we have left out unimportant prefactors and scaled the r variables by a factor
of Naf3? for later convenience.

When we apply the transformation (10.44) to (10.39), we can write our full
expression (10.34) for {(Z")) as

«Zn» o e~ Prn/2 /(H dm‘; (.@2_]17\/)1/2) (H dqpadf‘pa)
pp (po)
X exp(—%ﬁN Z(m‘:)2 - a_;\/_ Zlog A, — INap? Z:rpGQpa)
up P)

x (Trsexp(B3 ms Y €4St +4aB roSES7)Y) (1045)
Bp i

ipo

where the sums over g now run only over the condensed patterns: p=1,2, ..., 5.
We have also written 33 , instead of 3, and again left it understood that
diagonal pp terms are zero.

Now at last we can get rid of the i indices through self-averaging. The last line
of (10.45) is the pattern average of an expression with the form

X = Trsexp(Y_ Fi&.Si}) (10.46)
= 1'[Trs, exp F{&, S:} (10.47)
= exp (Z log Trs, exp F{£:, S.-}) . (10.48)

The function F depends on £}-¢} and S}-S7, but only one index ? is needed at a
time. The trace in (10.46) is over all the S’s (all i’s and all p’s), but in (10.47)
and (10.48) is over only the S{’s for a particular i. The result of the trace would
be exactly the same for each i except for the dependence of F on the £!’s, because
i is otherwise a dummy index. But since N (the number of #’s) is much larger as
N — oo than 2° (the number of possible sets {¢}'} at fixed 7), the sum over 7 is
equivalent to an average over patterns. Thus

X =exp (N«log Trsexp F{&, S.}») (10.49)

where now all i’s have disappeared and we have in effect a single unit with n different
S?’s and p different £€#’s. Note that in the end we did not need the outer average
{(---) in (10.45), because the self-averaging of the inner i sum already performs all
the pattern averaging. So we may drop the outer average.
Now we can write the whole expression for ((Z")) as an integral of the expo-
nential of something proportional to N:
2
(2™) x e=PPn/? j (H dm* (%’-)1/) (II dq,,,dr,,,,)e-Nﬁf {m.ar} (10.50)
we (o)

10.1 The Hopfield Mode! 261

where
o
f{m,q,7} = %E(m‘,f)2 o 2% D logh, + 2B Tpotpo
pp P po

= 5(os s exp (AT migrs? + 4o Y ro5757)). (1051)
Hp

po

The factor of N in the exponent allows us to use the saddle-point method again,
minimizing this time with respect to the ¢’s and r’s as well as the m’s. Thus we
obtain the free energy per unit

FIN = _ﬁ_lﬁ«xogz» _ ﬁi\' lim —(«z"))-1) (10.52)
= —Elﬁ hm —log((Z"))
- §+v!i—r-r}3 %minf{m,q,r}. (10.53)

In replacing ((Z")) — 1 by log({(Z™)) we just assumed that {{Z™)) goes to 1 as n — 0,
as it must; that is why we didn’t bother to keep all the prefactors earlier.
The location of the saddle point is determined by the equations

of
BmE = 0 (10.54)
of

=0 10.55
34,0 (10.55)
of
e 0. (10.56)

As in the simpler a = 0 case, these equations lead to interpretations of the order
parameters m}, ¢,,, and r,, at the saddle point:

mp = %Z_fﬁ‘ (S7) (10.57)

i = {55 L) (10.58)

oo = =3 (mims). (10.59)
H>s

We omit the detailed derivations of these results, which require the inclusion of
external field terms h* as in the o = 0 case. Equation (10.59), which comes from
0f/8¢p0 = 0, also involves rewriting the log A, term as a Gaussian integral. Note
that (10.57) is just like the a = 0 result (10.21) apart from the presence of the
replica index p.

262 TEN Formal Statistical Mechanics of Neural Networks

To proceed further we have to make an ansatz without a priori justification:
that of replica symmetry. This means that we assume that the saddle-point
values of the order parameters do not depend on their replica indices:

mh = mt (10.60)
Qoo = ¢ (10.61)
D = s (10.62)

The validity of this assumption can be tested afterwards, and one finds that it
is exactly true except at very low temperatures, and that even there it is a good
approximation.

With this simplification the meaning of the order parameters (10.57)—(10.99) 1s
evident, and consistent with the heuristic treatment in Chapter 2: m* is (as before)
the overlap between the network configuration and the pth pattern, ¢ is the mean
squared magnetization, and ar is the mean squared value of the overlap with the
uncondensed patterns (u > s). Each m* for p > s is of order 1/ Vv/N, but r remains
finite as N — oo because there are of order N terms in the sum (10.59).

Using the replica symmetric ansatz the expression (10.51) for f(m,g,r) sim-
plifies to

f(m,q,r) = jnm?®+ ziﬁ Zlog A, + in(n — 1)afrg + jnofr
p

—-%((log Trs exp [ﬁm -€ Z SP + %aﬂ21‘ (Z SP)Q] >> (10.63)

where the last term on the first line is to cancel the diagonal part of the (3, 5%)
term. We still have to evaluate the sum of the log A,’s and compute the average of
the Tr over the S'-S™ but, thanks to the replica symmetry, these can now be done
without too much trouble.

Let us first deal with the eigenvalue sum. The matrix A,, now has the simple

form]
_J1-p ifp=o;
Apo = {—ﬂq otherwise. (10.64)

It is an elementary exercise to show that such a matrix has eigenvalues
A=1-8-—(n—-1)8q (10.65)
with multiplicity 1 and
A=1-8(1-q) (10.66)

with multiplicity (i.e., number of eigenvectors with this eigenvalue) n—1. Thus the
sum over the logs of the eigenvalues becomes

%ZlogAp = —:z-{log[l—ﬂ—(ﬂ— 1)Bg] + (n — 1)log[1— (1 —)] }

Bq

(10.67)

10.1 The Hopfield Model 263

To evaluate the Tr over the S’s, we again use the Gaussian integral trick:

exp[-—cwﬂ2 ZS"] /\/_exp ——z o) arzZS") (10.68)

giving for the trace X = Trexp[--] in (10.63):

X = 'I‘rsfj%exp(—%zz+ﬂ(\/o7z+m-e)§5")

dz

Var
dz

Var

We actually want 1/n times the average of the log of this, in the n — 0 limit.
Expanding for small n gives

e=*1? (2 cosh f(v/arz +m - E))ﬂ

{

e=*1? exp(nlog[2 cosh f(v/arz + m E)]) . (10.69)

alosx) = L og [e (1.4 micglzcosh p(vars-+m-€)] +-.))

= l((n’/ﬂ e~*12og [2cosh B(Varz + m - &)] + - - >>
"= {(log[2 cosh f(x/arz + m - €)])) (10.70)

where now we take ((---)) to mean both the average over the condensed patterns
p < s and the Gaussian average over z. Physically this means averaging over all
the patterns, since the Gaussian random field z came from representing the effects
of the uncondensed patterns u > s.

All we have left is to collect the terms from (10.53), (10.63), (10.67), and (10.70)
to give the average free energy per site in the form

FIN = la+im +ﬁ(log[l~ﬂ(l—0)]—l—_[£§—_“5)

+1apr(1-q)— %((101;[2 coshB(Varz+m-§)])). (10.71)

The saddle-point equations (10.54)-(10.56) are equivalent to setting the derivatives
of F/N to zero, giving

m* = ((¢¥tanhB(Varz +m - £)) (10.72)
¢ = {{tanh?B(\/arz + m - €)) (10.73)
ro= e . (10.74)

(1-8(1-q))

264 TEN Formal Statistical Mechanics of Neural Networks

Only the second of these, which comes from F/dr = 0, is a little tricky, needing
the identity
dz
V2n

for any bounded function f(z).

Equation (10.72) is just like (10.22) for the a = 0 case, except for the addition
of the effective Gaussian random field term, which represents the crosstalk from the
uncondensed patterns. For a = 0 it reduces directly to (10.22). Equation (10.73)
is the obvious equation for the mean square magnetization. Equation (10.74) gives
the (nontrivial) relation between ¢ and the mean square value of the random field,
and is identical to (2.67).

For memory states, i.e., m-vectors of the form (m,0,0,...), the saddle-point
equations (10.72) and (10.73) become simply

dz
Var

e~ * 122 f(z) = e~ > 12f!(2) (10.75)

m = ((tanhB(Varz + m))), (10.76)
¢ = {(tanh?B(Varz + m))), (10.77)

where the averaging is solely over the Gaussian random field. These are are identical

to (2.65) and (2.68) that we found in the heuristic theory of Section 2.5. Their

solution, and the consequent phase diagram of the model in o — T space, can be

studied as we sketched there. Spurious states, such as the symmetric combinations

(10.26), can also be analyzed at finite using the full equations (10.72)-(10.74).
There are several subtle points in this replica method calculation:

m We started by calculating {(Z™)) for integer n but eventually interpreted n
as a real number and took the n — 0 limit. This is not the only possible
continuation from the integers to the reals; we might for example have added
a function like sin7n/n.

m We treated the order of limits and averages in a cavalier fashion, and in par-
ticular reversed the order of n — 0 and N — oo.

m We made the replica symmetry approximation (10.60)—(10.62) which was re-
ally only based on intuition.

Experience has shown that the replica method usually does work, but there are few
rigorous mathematical results. It can be shown for the Sherrington-Kirkpatrick spin
glass model, and probably for this one too, that the reversal of limits is justified,
and that the replica symmetry assumption is correct for integer n [van Hemmen
and Palmer, 1979]. But for some problems, including the spin glass, the method
sometimes gives the wrong answer. This can be blamed on the integer-to-real con-
tinuation, and can be corrected by replica symmetry breaking, in which the
replica symmetry assumption is replaced by a more complicated assumption. Then
the natural continuation seems to give the right answer.

For the present problem Amit et al. showed that the replica symmetric approx-
imation is valid except at very low temperatures where there is replica symmetry
breaking. This seems to lead only to very small corrections in the results. However,

10.2 Gardner Theory of the Connections 265

the predicted change in the capacity—a, becomes 0.144 instead of 0.138—can be
detected in numerical simulations [Crisanti et al., 1986).

10.2 Gardner Theory of the Connections

The second classic statistical mechanical tour de force in neural networks is the
computation by Gardner [1987, 1988] of the capacity of a simple perceptron. The
calculation applies in the same form to a Hopfield-like recurrent network for auto-
associative memory if the connections are allowed to be asymmetric.

This theory is very general; it is not specific to any particular algorithm for
determining the connections. On the other hand, it does not provide us with a
specific set of connections even when it has told us that such a set exists. As
in Section 6.5, the basic idea is to consider the fraction of weight space that
implements a particular input-output function; recall that weight space is the space
of all possible connection weights w = {w;;}.

In Section 6.5 we used relatively simple methods to calculate weight space
volumes. The present approach is more complicated, though often more powerful.
We use many of the techniques introduced in the previous section, including replicas,
auxiliary variables, and the saddle-point method.

We consider a simple perceptron with N binary inputs §; = £1 and M binary
threshold units that compute the outputs

O; = sgn (N—1/2Ewl.j£j) . (10.78)
J
The N~'/2 factor will be discussed shortly. Given a desired set of associations
£ — ¢ for p=1,2,..., p, we want to know in what fraction of weight space the
equations
¢} =sgn (N Y wejf,‘-‘) (10.79)
J

are satisfied (for all and p). Or equivalently, in what fraction of this space are the
inequalities

CENTED " wiiel > 0 (10.80)
J

true?
It is also interesting to ask the corresponding question if the condition (10.80)
is strengthened so there is a margin size « > 0 as in (5.20):

CENTH2N " wiel > k. (10.81)
]

A nonzero k guarantees correction of small errors in the input pattern.

